955 resultados para Intracellular Signaling Peptides and Proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial libraries of synthetic and natural products are an important source of molecular information for the interrogation of biological targets. Methods for the intracellular production of libraries of small, stable molecules would be a valuable addition to existing library technologies by combining the discovery potential inherent in small molecules with the large library sizes that can be realized by intracellular methods. We have explored the use of split inteins (internal proteins) for the intracellular catalysis of peptide backbone cyclization as a method for generating proteins and small peptides that are stabilized against cellular catabolism. The DnaE split intein from Synechocystis sp. PCC6803 was used to cyclize the Escherichia coli enzyme dihydrofolate reductase and to produce the cyclic, eight-amino acid tyrosinase inhibitor pseudostellarin F in bacteria. Cyclic dihydrofolate reductase displayed improved in vitro thermostability, and pseudostellarin F production was readily apparent in vivo through its inhibition of melanin production catalyzed by recombinant Streptomyces antibioticus tyrosinase. The ability to generate and screen for backbone cyclic products in vivo is an important milestone toward the goal of generating intracellular cyclic peptide and protein libraries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural investigations of large biomolecules in the gas phase are challenging. Herein, it is reported that action spectroscopy taking advantage of facile carbon-iodine bond dissociation can be used to examine the structures of large molecules, including whole proteins. Iodotyrosine serves as the active chromophore, which yields distinctive spectra depending on the solvation of the side chain by the remainder of the molecule. Isolation of the chromophore yields a double featured peak at ∼290 nm, which becomes a single peak with increasing solvation. Deprotonation of the side chain also leads to reduced apparent intensity and broadening of the action spectrum. The method can be successfully applied to both negatively and positively charged ions in various charge states, although electron detachment becomes a competitive channel for multiply charged anions. In all other cases, loss of iodine is by far the dominant channel which leads to high sensitivity and simple data analysis. The action spectra for iodotyrosine, the iodinated peptides KGYDAKA, DAYLDAG, and the small protein ubiquitin are reported in various charge states. © 2012 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Albumin binds low–molecular-weight molecules, including proteins and peptides, which then acquire its longer half-life, thereby protecting the bound species from kidney clearance. We developed an experimental method to isolate albumin in its native state and to then identify [mass spectrometry (MS) sequencing] the corresponding bound low–molecular-weight molecules. We used this method to analyze pooled sera from a human disease study set (high-risk persons without cancer, n= 40; stage I ovarian cancer, n = 30; stage III ovarian cancer, n = 40) to demonstrate the feasibility of this approach as a discovery method. Methods Albumin was isolated by solid-phase affinity capture under native binding and washing conditions. Captured albumin-associated proteins and peptides were separated by gel electrophoresis and subjected to iterative MS sequencing by microcapillary reversed-phase tandem MS. Selected albumin-bound protein fragments were confirmed in human sera by Western blotting and immunocompetition. Results In total, 1208 individual protein sequences were predicted from all 3 pools. The predicted sequences were largely fragments derived from proteins with diverse biological functions. More than one third of these fragments were identified by multiple peptide sequences, and more than one half of the identified species were in vivo cleavage products of parent proteins. An estimated 700 serum peptides or proteins were predicted that had not been reported in previous serum databases. Several proteolytic fragments of larger molecules that may be cancer-related were confirmed immunologically in blood by Western blotting and peptide immunocompetition. BRCA2, a 390-kDa low-abundance nuclear protein linked to cancer susceptibility, was represented in sera as a series of specific fragments bound to albumin. Conclusion Carrier-protein harvesting provides a rich source of candidate peptides and proteins with potential diverse tissue and cellular origins that may reflect important disease-related information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To investigate differences in genetic risk factors for rheumatoid arthritis (RA) in Han Chinese as compared with Europeans. Methods A genome-wide association study was conducted in China with 952 patients and 943 controls, and 32 variants were followed up in 2,132 patients and 2,553 controls. A transpopulation meta-analysis with results from a large European RA study was also performed to compare the genetic architecture across the 2 ethnic remote populations. Results Three non-major histocompatibility complex (non-MHC) loci were identified at the genome-wide significance level, the effect sizes of which were larger in anti-citrullinated protein antibody (ACPA)-positive patients than in ACPA-negative patients. These included 2 novel variants, rs12617656, located in an intron of DPP4 (odds ratio [OR] 1.56, P = 1.6 × 10 -21), and rs12379034, located in the coding region of CDK5RAP2 (OR 1.49, P = 1.1 × 10-16), as well as a variant at the known CCR6 locus, rs1854853 (OR 0.71, P = 6.5 × 10-15). The analysis of ACPA-positive patients versus ACPA-negative patients revealed that rs12617656 at the DPP4 locus showed a strong interaction effect with ACPAs (P = 5.3 × 10-18), and such an interaction was also observed for rs7748270 at the MHC locus (P = 5.9 × 10-8). The transpopulation meta-analysis showed genome-wide overlap and enrichment in association signals across the 2 populations, as confirmed by prediction analysis. Conclusion This study has expanded the list of alleles that confer risk of RA, provided new insight into the pathogenesis of RA, and added empirical evidence to the emerging polygenic nature of complex trait variation driven by common genetic variants. Copyright © 2014 by the American College of Rheumatology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural stabilizing property of 2,2,2-trifluoroethanol (TFE) in peptides has been widely demonstrated, More recently, TFE has been shown to enhance secondary structure content in globular proteins, and to influence quaternary interactions in protein multimers. The molecular mechanisms by which TFE exerts its Influence on peptide and protein structures remain poorly understood. The present analysis integrates the known physical properties of TFE with a variety of experimental observations on the interaction of TFE with peptides and proteins and on the properties of fluorocarbons. Two features of TFE, namely the hydrophobicity of the trifluoromethyl group and the hydrogen bonding character (strong donor and poor acceptor), emerge as the most important factors for rationalising the observed effects of TFE. A model is proposed for TFE interaction with peptides which involves an initial replacement of the hydration shell by fluoroalcohol molecules, a process driven by apolar interactions and favourable entropy of dehydration. Subsequent bifurcated hydrogen-bond formation with peptide carbonyl groups, which leave intramolecular interactions unaffected, promotes secondary structure formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetrapeptide sequences of the type Z-Pro-Y-X were obtained from the crystal structure data on 34 globular proteins, and used in an analysis of the positional preferences of the individual amino acid residues in the β-turn conformation. The effect of fixing proline as the second position residue in the tetrapeptide sequence was studied by comparing the data obtained on the positional preferences with the corresponding data obtained by Chou and Fasman using the Z-R-Y-X sequence, where no particular residue was fixed in any of the four positions. While, in general, several amino acid residues having relatively very high or very low preferences for specific positions were found to be common to both the Z-Pro-Y-X and Z-R-Y-X sequences, many significant differences were found between the two sets of data, which are to be attributed to specific interactions arising from the presence of the proline residue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disulfide crosslinks are ubiquitous in natural peptides and proteins, providing rigidity to polypeptide scaffolds. The assignment of disulfide connectivity in multiple crosslinked systems is often difficult to achieve. Here, we show that rapid unambiguous characterisation of disulfide connectivity can be achieved through direct mass spectrometric CID fragmentation of the disulfide intact polypeptides. The method requires a direct mass spectrometric fragmentation of the native disulfide bonded polypeptides and subsequent analysis using a newly developed program, DisConnect. Technical difficulties involving direct fragmentation of proteins are surmounted by an initial proteolytic nick and subsequent determination of the structures of these proteolytic peptides through DisConnect. While the connectivity in proteolytic fragments containing one cystine is evident from the MS profile alone, those with multiple cystines are subjected to subsequent mass spectrometric fragmentation. The wide applicability of this method is illustrated using examples of peptide hormones, peptide toxins, proteins, and disulfide foldamers of a synthetic analogue of a marine peptide toxin. The method, coupled with DisConnect, provides an unambiguous, straightforward approach, especially useful for the rapid screening of the disulfide crosslink fidelity in recombinant proteins, determination of disulfide linkages in natural peptide toxins and characterization of folding intermediates encountered in oxidative folding pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pressurized capillary electrochromatography (pCEC) was coupled with electrospray ionization mass spectrometry (ESI-MS) using a coaxial sheath liquid interface. It was used for separation and analysis of peptides and proteins. The effects of organic modifier and applied voltage on separation were investigated, and the effects of pH value of the mobile phase and the concentration of the electrolyte on ESI-MS signal were investigated. The resolution and detection sensitivity with different separation methods (pCEC, capillary high-performance liquid chromatography) coupled on-line with mass spectrometry were compared for the separation of a peptide mixture. To evaluate the feasibility and reliability of the experimental setup of the system, tryptic digests of cytochrome c and modified protein as real samples were analyzed by using pCEC-ESI-MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iminodiacetic acid (IDA)-type adsorbent is prepared at the one end of a capillary by covalently bonding IDA to the monolithic rods of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate). Cu(II) is later introduced to the support via the interaction with IDA. By this means, polymer monolithic immobilized metal affinity chromatography (IMAC) materials are prepared. With such a column, IMAC for on-line concentration and capillary electrophoresis (CE) for the subsequent analysis are hyphenated for the analysis of peptides and proteins. The reproducibility of such a column has been proved good with relative standard deviations (RSDs) of dead time of less than 5% for injection-to-injection and 12% for column-to-column (n = 3). Through application on the analysis of standard peptides and real protein samples, such a technique has shown promising in proteome study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endomesoderm is the common progenitor of endoderm and mesoderm early in the development of many animals. In the sea urchin embryo, the Delta/Notch pathway is necessary for the diversification of this tissue, as are two early transcription factors, Gcm and FoxA, which are expressed in mesoderm and endoderm, respectively. Here, we provide a detailed lineage analysis of the cleavages leading to endomesoderm segregation, and examine the expression patterns and the regulatory relationships of three known regulators of this cell fate dichotomy in the context of the lineages. We observed that endomesoderm segregation first occurs at hatched blastula stage. Prior to this stage, Gcm and FoxA are co-expressed in the same cells, whereas at hatching these genes are detected in two distinct cell populations. Gcm remains expressed in the most vegetal endomesoderm descendant cells, while FoxA is downregulated in those cells and activated in the above neighboring cells. Initially, Delta is expressed exclusively in the micromeres, where it is necessary for the most vegetal endomesoderm cell descendants to express Gcm and become mesoderm. Our experiments show a requirement for a continuous Delta input for more than two cleavages (or about 2.5 hours) before Gcm expression continues in those cells independently of further Delta input. Thus, this study provides new insights into the timing mechanisms and the molecular dynamics of endomesoderm segregation during sea urchin embryogenesis and into the mode of action of the Delta/Notch pathway in mediating mesoderm fate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-kappaB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA). Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFalpha-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFalpha-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth cone guidance and synaptic plasticity involve dynamic local changes in proteins at axons and dendrites. The Dual-Leucine zipper Kinase MAPKKK (DLK) has been previously implicated in synaptogenesis and axon outgrowth in C. elegans and other animals. Here we show that in C. elegans DLK-1 regulates not only proper synapse formation and axon morphology but also axon regeneration by influencing mRNA stability. DLK-1 kinase signals via a MAPKAP kinase, MAK-2, to stabilize the mRNA encoding CEBP-1, a bZip protein related to CCAAT/enhancer-binding proteins, via its 3'UTR. Inappropriate upregulation of cebp-1 in adult neurons disrupts synapses and axon morphology. CEBP-1 and the DLK-1 pathway are essential for axon regeneration after laser axotomy in adult neurons, and axotomy induces translation of CEBP-1 in axons. Our findings identify the DLK-1 pathway as a regulator of mRNA stability in synapse formation and maintenance and also in adult axon regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosome 5q22-33 is a region where studies have repeatedly found evidence for linkage to schizophrenia. In this report, we took a stepwise approach to systematically map this region in the Irish Study of High Density Schizophrenia Families (ISHDSF, 267 families, 1337 subjects) sample. We typed 289 SNPs in the critical interval of 8 million basepairs and found a 758 kb interval coding for the SPEC2/PDZ-GEF2/ACSL6 genes to be associated with the disease. Using sex and genotype-conditioned transmission disequilibrium test analyses, we found that 19 of the 24 typed markers were associated with the disease and the associations were sex-specific. We replicated these findings with an Irish case-control sample (657 cases and 414 controls), an Irish parent-proband trio sample (187 families, 564 subjects), a German nuclear family sample (211 families, 751 subjects) and a Pittsburgh nuclear family sample (247 families, 729 subjects). In all four samples, we replicated the sex-specific associations at the levels of both individual markers and haplotypes using sex- and genotype-conditioned analyses. Three risk haplotypes were identified in the five samples, and each haplotype was found in at least two samples. Consistent with the discovery of multiple estrogen-response elements in this region, our data showed that the impact of these haplotypes on risk for schizophrenia differed in males and females. From these data, we concluded that haplotypes underlying the SPEC2/PDZ-GEF2/ACSL6 region are associated with schizophrenia. However, due to the extended high LD in this region, we were unable to distinguish whether the association signals came from one or more of these genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor kappa B (NF-kappa B) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor-associated kinase 2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.